
netdev testing ‘24
Jakub Kicinski

NIPA - Netdev Infrastructure for Patch Automation

It is:

- git repo with random scripts
- bash and Python

- pulling things from patchwork
- build testing and basic checks
- selftests runners

- HTML and JavaScript
- basic UI pages

It is *not*:

- general testing project
- intended to accumulate code
- intended to contain tests

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4
● user feedback
● automated feedback

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4

Automated feedback
● kbuild bot
● kbuild bot (perf)
● selftests
● syzbot

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

follow up

v4

Automated feedback
● kbuild bot
● kbuild bot (perf)
● selftests
● syzbot

Testing timeline

Dec ‘19

Initial NIPA code written

While at Netronome..

Oct ‘20

Initial NIPA deployed

… at Facebook. Basic patch
checks, build test with GCC,
Clang. Executed patch-by-patch.

Oct ‘23

Branch creation support

Collect all patches from
patchwork, push them to a single
branch on GitHub.

Dec ‘23

Report branch results

Run and report back to
patchwork simple tests like
coccicheck, documentation
building, Kunit.

Oct ‘24

Supported drivers deadline

Jan ‘24

Running kselftest

Contest running networking
selftests.

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

WIP

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

Time to results
● build: 1-12h [queue]
● ksft: 3h [fixed]
● ksft drv: <12h [fixed]

Testing as a maintainer

Mailing
list

Tree

v1

v2

v3

Time to results
● build: 1-12h [queue]
● ksft: 3h [fixed]
● ksft drv: <12h [fixed]

maintainerdeveloper

End of history lesson

Benefits of (hardware) testing

0. improve code quality
1. better for developers
2. better for users
3. better for vendors

Linux development model

Development Users

release

bug reports

Linux development model

Development Users

release

bug reports

👍

Linux SW delivery

-next tree UsersLinus distro

<2mo 2mo 1mo, 6mo, 2yr

Development

Linux model for “power users”

-next tree UsersDevelopment production kernel canary rollout

>12mo

Linux model for “power users”

-next tree UsersDevelopment production kernel canary rolloutPlanning / scheduling

Linux model with vendors

-next tree UsersDevelopment production kernel canary rolloutPlanning / scheduling

4mo 2mo 2mo

1mo 1mo 1mo

Linux model with vendors

-next tree UsersDevelopment production kernel canary rolloutPlanning / scheduling

4mo 2mo 2mo

1mo 1mo 1mo

Linux model with vendors

-next tree UsersDevelopment production kernel canary rolloutPlanning / scheduling

4mo 2mo 2mo

1mo 1mo 1mo

=> Improve feature delivery (#1)

Linux model with vendors

-next tree UsersDevelopment production kernel canary rolloutPlanning / scheduling

4mo 2mo 2mo

tests

User participation

● define requirements as tests
● upstream tests reflecting use cases

○ ensure we don’t regress them during development
○ increase compatibility between implementations

● share validation effort
● cover production requirements

○ how to handle failures; what metrics are important
○ what introspection / capabilities need to be expressed

● historically we used software models…

Sidebar: Software models

Software models = we should implement HW config as offload of SW constructs

＋ came about during early SR-IOV days
＋ contained the mess of divergent implementations
＋ offload well understood functions (bridging, routing, TC rules)
＋ there’s a clear definition of the correct behavior
＋ if HW not present SW can play the role

- hard to make sense of in real HW cases (RSS = RPS offload?)
- in reality most SW today choses in BPF
- mixed success

Better flow

● define tests together with specs
● parallel development

○ netdevsim can be used for prototypes of higher layer SW
● iterate during development
● commit the tests when the implementation is ready
● validate updates before they even make it upstream

=> Increase user participation (#2)

Help developers

● make upstream-first development model more feasible
○ most testing depends on out of tree tooling
○ tests hardcode vendor specific expectations
○ drive standardization

● decrease the time spent writing tests (which some else already wrote)
● increase job portability

=> Increase vendor participation (#3)

Technical half of the presentation

Infrastructure

GitHub

Main repos:
- NIPA - all the infra related code
- testing - tree with ephemeral branches to test
- various YNL repos…

There is also a wiki!
- how the system works
- how to run SW tests
- how to run driver tests

NIPA (contests)

Patchwork

Contest page

https://netdev.bots.linux.devcontest.html

Flakes page

https://netdev.bots.linux.dev/flakes.html

Status page

https://netdev.bots.linux.dev/status.html

Executor (vmksft-p)

wraps virtme-ng in a thin layer of python (for runtime management etc)

- build kernels (virtme-ng -b)
- build tests (pure make -C tools …)
- put all tests into a queue
- boot a few VMs which consume tests from the queue
- parse the test output and generate JSON

We try to stick to kselftest infra and virtme-ng.

How to write a test…

Languages

● bash scripts
○ we have some libraries with helpers

● C code
○ kselftest_harness.h helps with the basics

● Python
○ recently added small set of helpers to write tests
○ don’t expect too much

● do you own thing
○ KTAP would be nice!

Do your own thing

Step 1. Return the right exit codes
Step 2. Add to Makefile
Step 3. Profit.

Return codes:
- 0 - PASS
- 1 - FAIL
- 2, 3 - XFAIL, XPASS
- 4 - SKIP

Makefile, add your test to:

- scripts
TEST_PROGS

- sources that need to be built,
mostly C

TEST_GEN_PROGS

- if you need to build binary
which isn’t a test by itself

TEST_GEN_FILES

https://www.kernel.org/doc/html/next/dev-tools/kselftest.html

https://www.kernel.org/doc/html/next/dev-tools/kselftest.html

C kelftests (harness)

- wrapper which runs functions declared with TEST()
- provides various EXPECT() and ASSERT() macros for checking
- supports FIXTURE()s - shared environment setup for multiple test cases
- supports VARIANT()s - calling the same test with different parameters
- various niceties like selecting which cases to run
- YNL and libbpf are directly accessible (other libs depending on OS)
- make headers

bash tests

● largely do your own thing
● $ksft/net/lib.sh provides helpers for:

○ combining exit codes from cases
○ netns create / delete
○ various forms of waiting until condition is true

● $ksft/net/forwarding/lib.sh:
○ environment checks, command etc.
○ getting stats, logging
○ netns, driver / veth operations
○ TC operations
○ ping, tcpdump

Python

Small library to do basics:
- run a list of functions (tests), and print result (KTAP)
- basic assert helpers for checking conditions
- couple simple wrappers to run a command, incl. in background
- create and destroy netns and netdevsim
- YNL

Python + YNL example
from lib.py import ksft_run, ksft_exit, ksft_pr, ksft_eq, ksft_ge, ksft_busy_wait, NetdevFamily

def empty_check(nf) -> None:
 devs = nf.dev_get({}, dump=True)
 ksft_ge(len(devs), 1)

def lo_check(nf) -> None:
 lo_info = nf.dev_get({"ifindex": 1})
 ksft_eq(len(lo_info['xdp-features']), 0)
 ksft_eq(len(lo_info['xdp-rx-metadata-features']), 0)

def main() -> None:
 nf = NetdevFamily()
 ksft_run([empty_check, lo_check, page_pool_check],
 args=(nf,))
 ksft_exit()

kselftest infra

kselftests support building and packaging tests for running remotely.
Tests can also be run using make (run_tests)
Or just executed directly.
For headers make headers.
There are various build, cross-compilation and deployment features.
Don’t color outside the lines too much.

https://www.kernel.org/doc/html/next/dev-tools/kselftest.html

https://www.kernel.org/doc/html/next/dev-tools/kselftest.html

Driver tests

We have multiple test directories (main ones):

● net/
● net/forwarding
● net/{mptcp,tcp_ao,openvswitch}
● drivers/net/{bonding,team,virtio}
● drivers/net/netdevsim

Driver tests:

● drivers/net - compatible with netdevsim
● drivers/net/hw - need real HW

Driver tests - running the tests

Local tests (single host):

- NETIF

“Remote” tests (dual host / interface):

- LOCAL_V4, LOCAL_V6, REMOTE_V4, REMOTE_V6
- REMOTE_TYPE={netns,ssh}
- REMOTE_ARG

Quirks:

- KSFT_MACHINE_SLOW=yes

TODOs

● what’s missing for distributed testing
○ 12h branch (how long do tests run?)
○ integration for machine types / tracking
○ auto-judge based on setup and history
○ UI

● more ?

