netdev testing 24

Jakub Kicinski



]
NIPA - Netdev Infrastructure for Patch Automation

Itis: It is *not*:
- git repo with random scripts - general testing project
- bash and Python - intended to accumulate code
- pulling things from patchwork - intended to contain tests

- build testing and basic checks
- selftests runners

- HTML and JavaScript
- basic Ul pages
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Testing as a maintainer
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Testing timeline

Initial NIPA code written

While at Netronome..

Oct ‘20

Branch creation support Running kselftest
Collect all patches from Contest running networking
patchwork, push them to a single selftests.

branch on GitHub.

Dec ‘23

Dec ‘19
Initial NIPA deployed

... at Facebook. Basic patch
checks, build test with GCC,

Clang. Executed patch-by-patch.

Oct ‘23 Jan ‘24

Report branch results

Run and report back to
patchwork simple tests like
coccicheck, documentation
building, Kunit.

Oct ‘24
(
Supported drivers deadline
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End of history lesson
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Benefits of (hardware) testing

s | i
1. better for developers
2. Dbetter for users

3. Dbetter for vendors
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Linux SW delivery
Development -next tree Linus distro Users
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Linux model for “power users”
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Linux model with vendors
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=> |Improve feature delivery (#1)



Linux model with vendors
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User participation

e define requirements as tests

e upstream tests reflecting use cases

o ensure we don’t regress them during development
o increase compatibility between implementations

e share validation effort

e cover production requirements

o how to handle failures; what metrics are important
o whatintrospection / capabilities need to be expressed

e historically we used software models...



]
Sidebar: Software models

Software models = we should implement HW config as offload of SW constructs

came about during early SR-I0V days

contained the mess of divergent implementations

offload well understood functions (bridging, routing, TC rules)
there’s a clear definition of the correct behavior

if HW not present SW can play the role

++ + + +

- hard to make sense of in real HW cases (RSS = RPS offload?)
- in reality most SW today choses in BPF
- mixed success



]
Better flow

e define tests together with specs

e parallel development
o netdevsim can be used for prototypes of higher layer SW

e iterate during development
e commit the tests when the implementation is ready
e validate updates before they even make it upstream



=> |[ncrease user participation (#2)
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Help developers

e make upstream-first development model more feasible

o most testing depends on out of tree tooling
o tests hardcode vendor specific expectations
o drive standardization

e decrease the time spent writing tests (which some else already wrote)
® increase job portability



=> |[ncrease vendor participation (#3)



Technical half of the presentation



Infrastructure
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GitHub

Main repos:
- NIPA - all the infra related code
- testing - tree with ephemeral branches to test
- various YNL repos...

There is also a wiki!
- how the system works
- how to run SW tests
- how to run driver tests
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NIPA (contests)
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Patchwork

HSWSV/LUNU_uidiy SUGLESS  CHUIS aliu Wallllys USIVIE. 7 TS Pail. 7
netdev/verify_signedoff success Signed-off-by tag matches author and committer
netdev/deprecated _api success None detected

netdev/check_selftest success No net selftest shell script

netdev/verify_fixes success No Fixes tag

netdev/build_allmodconfig_warn success Errors and warnings before: 7 this patch: 7

netdev/checkpatch success total: 0 errors, 0 warnings, 0 checks, 7 lines checked
netdev/build_clang_rust success No Rust files in patch. Skipping build
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/source_inline success Was 0 now: 0

(

| netdev/contest success net-next-2024-07-29--15-00 (tests: 702)
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Contest page

https://netdev.bots.linux.devcontest.html

Branch

Remote

m
dbg

Executor

Test Result

fib-nexthops-sh

test-vxlan-mdb-sh

xfrm-policy-sh

bpf-offload-py

fib-tests-sh

rtnetlink-sh

I12-tos-ttl-inherit-sh

Retry Links
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Flakes page

https://netdev.bots.linux.dev/flakes.html

Test flakiness, sorted by the number of flips




Status page

https://netdev.bots.linux.dev/status.html

Build processing Continuous testing results
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Executor (vmksft-p)

wraps virtme-ng in a thin layer of python (for runtime management etc)

- build kernels (virtme-ng -b)

- build tests (pure make -C tools ...)

- put all tests into a queue

- boot a few VMs which consume tests from the queue
- parse the test output and generate JSON

We try to stick to kselftest infra and virtme-ng.



How to write a test...
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Languages

e bash scripts
o we have some libraries with helpers

e (C code
o kselftest_harness.h helps with the basics
e Python

o recently added small set of helpers to write tests
o don’t expect too much

e do you own thing
o  KTAP would be nice!



Do your own thing

Step 1. Return the right exit codes
Step 2. Add to Makefile
Step 3. Profit.

Return codes:
- 0 - PASS
- 1-FAIL
- 2,3 - XFAIL, XPASS
- 4 - SKIP

Makefile, add your test to:

- scripts
TEST_PROGS

- sources that need to be built,

mostly C
TEST_GEN_PROGS

- if you need to build binary
which isn’t a test by itself
TEST_GEN_FILES

https://www.kernel.org/doc/htmU/next/dev-tools/kselftest.html



https://www.kernel.org/doc/html/next/dev-tools/kselftest.html
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C kelftests (harness)

wrapper which runs functions declared with TEST()

provides various EXPECT () and ASSERT () macros for checking

supports FIXTURE () s - shared environment setup for multiple test cases
supports VARIANT ()s - calling the same test with different parameters
various niceties like selecting which cases to run

YNL and libbpf are directly accessible (other libs depending on OS)

make headers



]
bash tests

e largely do your own thing
e Sksft/net/lib.sh provides helpers for:

o combining exit codes from cases
o netns create / delete
o various forms of waiting until condition is true

e Sksft/net/forwarding/lib.sh:

o environment checks, command etc.
getting stats, logging

netns, driver / veth operations

TC operations

ping, tcpdump

o O O O



]
Python

Small library to do basics:
- run a list of functions (tests), and print result (KTAP)
- basic assert helpers for checking conditions
- couple simple wrappers to run a command, incl. in background
- create and destroy netns and netdevsim
- YNL



Python + YNL example

lib.py ksft_run, ksft_exit, ksft_pr, ksft_eq, ksft_ge, ksft_busy wait, NetdevFamily

empty_check(nf) ->
devs = nf.dev_get({}
ksft_ge(len(devs), 1)

lo_check(nf) ->
lo_info = nf.dev_get({
ksft_eq(len(lo_info[
ksft_eq(len(lo_info[

main() ->
nf = NetdevFamily()
ksft_run([empty_check, lo_check, page pool check]
=(nf, ))
ksft_exit()
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kselftest infra

kselftests support building and packaging tests for running remotely.
Tests can also be run using make (run_tests)
Or just executed directly.

For headers make headers.
There are various build, cross-compilation and deployment features.

Don’t color outside the lines too much.

https://www.kernel.org/doc/htmU/next/dev-tools/kselftest.html



https://www.kernel.org/doc/html/next/dev-tools/kselftest.html
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Driver tests

We have multiple test directories (main ones):

net/

net/forwarding
net/{mptcp,tcp_ao,openvswitch}
drivers/net/{bonding,team,virtio}
drivers/net/netdevsim

Driver tests:

e drivers/net - compatible with netdevsim
e drivers/net/hw - need real HW
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Driver tests - running the tests

Local tests (single host):
- NETIF
“Remote” tests (dual host / interface):

- LOCAL_V4, LOCAL_V6, REMOTE_V4, REMOTE_V6
- REMOTE_TYPE={netns,ssh}
- REMOTE_ARG

Quirks:
- KSFT_MACHINE_SLOW=yes



]
TODOs

e what's missing for distributed testing
12h branch (how long do tests run?)
integration for machine types / tracking

auto-judge based on setup and history
Ul

e more?

o O O O



