netdev testing 24

Jakub Kicinski

]
NIPA - Netdev Infrastructure for Patch Automation

Itis: It is *not*:
- git repo with random scripts - general testing project
- bash and Python - intended to accumulate code
- pulling things from patchwork - intended to contain tests

- build testing and basic checks
- selftests runners

- HTML and JavaScript
- basic Ul pages

Testing as a maintainer

vl > @
v2 | >
v3 | > @ : %
vd | > | >
: =
follow up I > | S
Mailing Tree

Testing as a maintainer

vl > a
v2 | >
v3 | > @ : x
vd | > | >
: =
follow up I > | 5
Mailing Tree

Testing as a maintainer

vl

v2

v3

v4

follow up

D @

D

2,
Q

9 3
Mailing Tree

Testing as a maintainer

vl I

v2 |

D
D
v3 | >
D

vd |

]

<
follow up T 3
Mailing Tree

Testing as a maintainer

vl > @
v2 | > @
v3 | > : %
v g | D e user feedback
g e automated feedback
follow up | > | S
Mailing Tree

Testing as a maintainer

vl | > @
v2 > @
v3 > Automated feedback
——X e Kkbuild bot
va | 4l 3 e kbuild bot (perf)
4_= ® selftests
follow up | 4t 3 e syzbot

Testing as a maintainer

vl | > @

v2 > @

v3 > Automated feedback

—> X e kbuild bot

v4 | > | 3 cbibel] [2

4_= e selftests
follow up I > | > O—S‘y‘i‘be’t

Mailing Tree

Testing timeline

Initial NIPA code written

While at Netronome..

Oct ‘20

Branch creation support Running kselftest
Collect all patches from Contest running networking
patchwork, push them to a single selftests.

branch on GitHub.

Dec ‘23

Dec ‘19
Initial NIPA deployed

... at Facebook. Basic patch
checks, build test with GCC,

Clang. Executed patch-by-patch.

Oct ‘23 Jan ‘24

Report branch results

Run and report back to
patchwork simple tests like
coccicheck, documentation
building, Kunit.

Oct ‘24
(
Supported drivers deadline

Testing as a maintainer

vl | >
)
=¥
v2 | >>
=;
v3 | >| S
Mailing Tree

list

Testing as a maintainer

o WIP
! v ;>=_. :
= =
v2 > .
S
o | T
| >
Mailing Tree

list

Testing as a maintainer

vl | >

o

=

- =

e ’ >= Time to results
= e build: 1-12h [queue]

v3 | > = e ksft: 3h [fixed]

|) e ksft drv: <12h [fixed]

Mailing Tree

list

Testing as a maintainer

developer maintainer
() |

vl | >

=)

—

- =

e ’ ?§ Time to results
p— — e build: 1-12h [queue]

v3 | > e ksft: 3h [fixed]

|) o ksftdrv: <12h [fixed]

Mailing Tree

list

End of history lesson

]
Benefits of (hardware) testing

s | i
1. better for developers
2. Dbetter for users

3. Dbetter for vendors

Linux development model

release >

bug reports

Development Users

Linux development model

N N’
release >
-
bug reports

Development Users

§

Linux SW delivery
Development -next tree Linus distro Users

<2mo 2mo 1mo, 6mo, 2yr

Linux model for “power users”

ool Bel Pe

Development

-next tree production kernel canary rollout Users

>12mo

Linux model for “power users”

q}>0}>*)}>' »*D .EO

ning / scheduling Development production kernel

Linux model with vendors

ool B el Ple

Planning / scheduling Development -next tree production kernel canary rollout Users

4mo 2mo 2mo >

1mo 1mo 1mo

<

Linux model with vendors

ool B el Ple

Planning / scheduling Development -next tree production kernel canary rollout Users

4mo 2mo 2mo >

1mo 1mo 1mo

<

Linux model with vendors

ool B el Ple

Planning / scheduling Development -next tree production kernel canary rollout Users

4mo 2mo 2mo >
— - e - o - e e S —
< - m— = TN N e
— - —

=> |Improve feature delivery (#1)

Linux model with vendors

q§>0}>*)}>' »*D .EO

ning / scheduling Development production kernel

4mo 2mo 2mo

]
User participation

e define requirements as tests

e upstream tests reflecting use cases

o ensure we don’t regress them during development
o increase compatibility between implementations

e share validation effort

e cover production requirements

o how to handle failures; what metrics are important
o whatintrospection / capabilities need to be expressed

e historically we used software models...

]
Sidebar: Software models

Software models = we should implement HW config as offload of SW constructs

came about during early SR-I0V days

contained the mess of divergent implementations

offload well understood functions (bridging, routing, TC rules)
there’s a clear definition of the correct behavior

if HW not present SW can play the role

++ + + +

- hard to make sense of in real HW cases (RSS = RPS offload?)
- in reality most SW today choses in BPF
- mixed success

]
Better flow

e define tests together with specs

e parallel development
o netdevsim can be used for prototypes of higher layer SW

e iterate during development
e commit the tests when the implementation is ready
e validate updates before they even make it upstream

=> |[ncrease user participation (#2)

]
Help developers

e make upstream-first development model more feasible

o most testing depends on out of tree tooling
o tests hardcode vendor specific expectations
o drive standardization

e decrease the time spent writing tests (which some else already wrote)
® increase job portability

=> |[ncrease vendor participation (#3)

Technical half of the presentation

Infrastructure

]
GitHub

Main repos:
- NIPA - all the infra related code
- testing - tree with ephemeral branches to test
- various YNL repos...

There is also a wiki!
- how the system works
- how to run SW tests
- how to run driver tests

]
NIPA (contests)

Remote public
HTTP server

remotes

: NIPA : T
- S e 1
: : E Remote site / independent executors | ' !
1 : 1 : : I
: Lo H
!

! Branch constructor R:r?gs : ! build / runs tests / : : :
] (for pre-commit signal) 1 . | expose results i
! branches ! : ; : :
: : ! : [
i branches ' ! 3 d
|
' | H : build / runs tests / ! . 1
. l i ' expose results 33
: : ! 17
1 ul : A ——— et
1

patchwork . status sQelrj\(/ei?; ;
' contest !
1
Il 1
: I :
1 L
i filters ! O !
1 L3 !
! : Pttt 11
: 1 1 I 1
' ' i '
|
| Status Results ! ! !
: updater DB Collector : - + Results :
: 1 1
' 1 1
Il 1 1
' i i
' 1 1
' 1 1
Il 1

1

]
Patchwork

HSWSV/LUNU_uidiy SUGLESS CHUIS aliu Wallllys USIVIE. 7 TS Pail. 7
netdev/verify_signedoff success Signed-off-by tag matches author and committer
netdev/deprecated _api success None detected

netdev/check_selftest success No net selftest shell script

netdev/verify_fixes success No Fixes tag

netdev/build_allmodconfig_warn success Errors and warnings before: 7 this patch: 7

netdev/checkpatch success total: 0 errors, 0 warnings, 0 checks, 7 lines checked
netdev/build_clang_rust success No Rust files in patch. Skipping build
netdev/kdoc success Errors and warnings before: 0 this patch: 0
netdev/source_inline success Was 0 now: 0

(

| netdev/contest success net-next-2024-07-29--15-00 (tests: 702)

]
Contest page

https://netdev.bots.linux.devcontest.html

Branch

Remote

m
dbg

Executor

Test Result

fib-nexthops-sh

test-vxlan-mdb-sh

xfrm-policy-sh

bpf-offload-py

fib-tests-sh

rtnetlink-sh

I12-tos-ttl-inherit-sh

Retry Links

]
Flakes page

https://netdev.bots.linux.dev/flakes.html

Test flakiness, sorted by the number of flips

Status page

https://netdev.bots.linux.dev/status.html

Build processing Continuous testing results

Tree (ell} Tid

bpf Branch Remote

CPU Memory

Status Tasks
cores Use

110.40Gi

0.06

0.04
pending

0.15

0.00

1h 55m
2024, 2:00:14 A

h 56m

all hidden) 1F

2024, 11:00:12

hidden)

4 hidden)

]
Executor (vmksft-p)

wraps virtme-ng in a thin layer of python (for runtime management etc)

- build kernels (virtme-ng -b)

- build tests (pure make -C tools ...)

- put all tests into a queue

- boot a few VMs which consume tests from the queue
- parse the test output and generate JSON

We try to stick to kselftest infra and virtme-ng.

How to write a test...

]
Languages

e bash scripts
o we have some libraries with helpers

e (C code
o kselftest_harness.h helps with the basics
e Python

o recently added small set of helpers to write tests
o don’t expect too much

e do you own thing
o KTAP would be nice!

Do your own thing

Step 1. Return the right exit codes
Step 2. Add to Makefile
Step 3. Profit.

Return codes:
- 0 - PASS
- 1-FAIL
- 2,3 - XFAIL, XPASS
- 4 - SKIP

Makefile, add your test to:

- scripts
TEST_PROGS

- sources that need to be built,

mostly C
TEST_GEN_PROGS

- if you need to build binary
which isn’t a test by itself
TEST_GEN_FILES

https://www.kernel.org/doc/htmU/next/dev-tools/kselftest.html

https://www.kernel.org/doc/html/next/dev-tools/kselftest.html

]
C kelftests (harness)

wrapper which runs functions declared with TEST()

provides various EXPECT () and ASSERT () macros for checking

supports FIXTURE () s - shared environment setup for multiple test cases
supports VARIANT ()s - calling the same test with different parameters
various niceties like selecting which cases to run

YNL and libbpf are directly accessible (other libs depending on OS)

make headers

]
bash tests

e largely do your own thing
e Sksft/net/lib.sh provides helpers for:

o combining exit codes from cases
o netns create / delete
o various forms of waiting until condition is true

e Sksft/net/forwarding/lib.sh:

o environment checks, command etc.
getting stats, logging

netns, driver / veth operations

TC operations

ping, tcpdump

o O O O

]
Python

Small library to do basics:
- run a list of functions (tests), and print result (KTAP)
- basic assert helpers for checking conditions
- couple simple wrappers to run a command, incl. in background
- create and destroy netns and netdevsim
- YNL

Python + YNL example

lib.py ksft_run, ksft_exit, ksft_pr, ksft_eq, ksft_ge, ksft_busy wait, NetdevFamily

empty_check(nf) ->
devs = nf.dev_get({}
ksft_ge(len(devs), 1)

lo_check(nf) ->
lo_info = nf.dev_get({
ksft_eq(len(lo_info[
ksft_eq(len(lo_info[

main() ->
nf = NetdevFamily()
ksft_run([empty_check, lo_check, page pool check]
=(nf,))
ksft_exit()

]
kselftest infra

kselftests support building and packaging tests for running remotely.
Tests can also be run using make (run_tests)
Or just executed directly.

For headers make headers.
There are various build, cross-compilation and deployment features.

Don’t color outside the lines too much.

https://www.kernel.org/doc/htmU/next/dev-tools/kselftest.html

https://www.kernel.org/doc/html/next/dev-tools/kselftest.html

]
Driver tests

We have multiple test directories (main ones):

net/

net/forwarding
net/{mptcp,tcp_ao,openvswitch}
drivers/net/{bonding,team,virtio}
drivers/net/netdevsim

Driver tests:

e drivers/net - compatible with netdevsim
e drivers/net/hw - need real HW

]
Driver tests - running the tests

Local tests (single host):
- NETIF
“Remote” tests (dual host / interface):

- LOCAL_V4, LOCAL_V6, REMOTE_V4, REMOTE_V6
- REMOTE_TYPE={netns,ssh}
- REMOTE_ARG

Quirks:
- KSFT_MACHINE_SLOW=yes

]
TODOs

e what's missing for distributed testing
12h branch (how long do tests run?)
integration for machine types / tracking

auto-judge based on setup and history
Ul

e more?

o O O O

